
Sequences, Series, and Recursion

Pavel Panchekha ∗

April 21, 2011

Formalisms

Sequences are a common topic of math competition questions and, in general, are something
you should know about. Formally, a sequence a or {a}n is a ordered sequence of numbers
a1, a2, a3, . . ., which can be infinite. Depending on who you ask, a sequence starts at a0 or a1

(we’ll be using a1 here, as that is the common mathematical convention). Often, elements
of a sequence are integral, but that isn’t necessary. Usually, a sequence is generated by a
rule, but neither is that necessary. Most of you already know all of this.

We can also define the sum of the first n elements of a sequence as a1 + a2 + a3 + · · · + an,
denoted by

∑n
k=1 ak. Lastly, we can define the infinite sum

∑∞
k=1 ak, or just

∑
k ak, as the

limit of the partial sums.

Basic Sequence Types

The most basic sequence types are arithmetic and geometric sequences. An arithmetic
sequence is given recursively by an = an−1 + d, and a geometric sequence by an = an−1r,
with a1, r, and d given. It’s pretty easy to see the closed-form (non-recursive) way to
represent these: in an arithmetic sequence, we add d each time we go to the next element,
so we see that an = a1 + (n− 1)d, and for a geometric sequence, we use the same reasoning
to arrive at an = a1r

n−1.

Now, what about sums of these sequences? Well, for an arithmetic sequence, we can take
the elements two at a time, with the first and last being a pair, then the second and second-
to-last, and so on. Notice that all of these pairs have the same sum. Now, if we have an

∗Thanks to Ben Alpert and Ben Kraft for reading and revising drafts.
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even number of elements, all the numbers will be paired up, and each pair will have sum
a1 + (a1 + (n− 1)d) = 2a1 + (n− 1)d. There will be n/2 such pairs, so the final sum is

a1n+ d
n(n− 1)

2
.

On the other hand, if we have an odd number of terms, we have (n − 1)/2 pairs of size
2a1 + (n− 1)d and a singleton of half that size, so the final result is

n− 1

2
(2a1 + (n− 1)d) +

1

2
(2a1 + (n− 1)d) = a1n+ d

n(n− 1)

2
,

which is the same as what we got for even n. Cool!

Now, for geometric sequences. Consider the infinite sum 1 + r+ r2 + . . . , and let it equal S.
Then rS = r+r2 + . . . , and S−rS = 1. Thus, the infinite sum S is equal to 1/1−r. We can
use this to find the partial sum: 1 + r+ · · ·+ rn is equal to the infinite sum S minus rn+1S,
or rn−1

r−1
. From this, we see that the sum of a geometric sequence is a1

rn−1
r−1

. An important
note is that in the case of an infinite sum, this is equal to a1/(1− r).

But anyway, geometric and arithmetic series are boring. Let’s move on to something more
fun!

Finite Differences

Another good tool to have to attack sequences, one that is much simpler than characteristic
polynomials, is finite differences. Basically, the finite difference sequence of a sequence {a}n
is the sequence bn = an+1 − an. It can give insight into how a sequence works.

For example, if you have the sequence 1, 4, 9, 16, 25, . . . , the finite differences are the sequence
of odd numbers 3, 5, 7, 9, . . . (prove it!). The finite differences of this are just 2, 2, 2, . . . . Now,
there are a few obvious properties. Firstly, any linear sequence has constant finite differences
(prove it!). Also, if you have the geometric sequence an = a0r

n, the finite difference is
bn = a0(r − 1)rn (prove it!).

Problem Section 1

1. Above, we saw that n2, a quadratic, has a linear finite difference sequence. Prove this
for all quadratic sequences.
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2. What about cubics?

3. What about an nth order polynomial?

Recursively Defined Sequences

In the very general case, recursively defined sequences are those of the form

an = f(a1, a2, a3, . . . , an−1) + g(n).

We call such a recursive definition homogeneous if g(n) = 0. If f doesn’t depend on anything
except the last k terms, we say the definition is kth-order. In general, however, we only care
about two very specific classes of recursive definitions: kth-order linear recurrences and
everything else. A kth-order linear recursive equation is one of the form:

an = b1an−1 + b2an−2 + · · ·+ bkan−k + g(n).

I’ll add a quote here, by Richard Feynman: Classification of mathematical problems as linear
and nonlinear is like classification of the Universe as bananas and non-bananas. Alas, it’s
true. But linear problems are usually the only solveable ones, so we have to deal1.

Generally, we try as best we can to avoid non-homogeneous relations. Now, let’s look at a
problem that has to do with linear recurrence relations of this sort. This problem is rather
old (first stated in Europe in 1202), but it is nonetheless a good example of the techniques
that we’ll be using.

You have the following model of rabbit growth: At first, you start with one immature
rabbit, and each month, all immature rabbits mature and all mature rabbits give birth to
an immature rabbit (somehow, they reproduce asexually, but that may have something to
do with the fact that they’re immortal).

Now, we can get the first few terms (always a good idea): 1, 1, 2, 3, 5. In fact, we notice that
each month, the number of mature rabbits is the number of rabbits the month before. Thus,
we quickly derive the recurrence relation Rn+2 = Rn+1 + Rn. Now, this is cool, and we can
quickly get lots of terms, but how about a closed form?

To find a closed form, we assume that the closed form expression is of the form Rn = λn.
Actually, Rn clearly is not just an exponential, because then λ1 = λ2, giving us λ = 1, or

1Not convinced that non-linear problems are hard? Try the following recurrence: an+1 = 4an(1 − an),
with a1 = 1/3. No, try it for a1 = 1/3 + 10−10, and note how after a while, the solutions diverge completely.
This is the so-called butterfly effect: errors will grow unboundedly in most non-linear systems. You can’t
get this in a linear system.
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Rn = 1, but what we’re doing here is called ansatz — making an educated guess and building
on the results. Anyway, substituting in our guess gives us

λn = λn−1 + λn−2

λ2 − λ− 1 = 0

λ =
1±

√
1− 4(−1)

2

=
1±
√

5

2
.

Now we think. If we have some sequence {a}n which satisfies our recurrence, and some
other sequence ({b}n, say), then {a + b}n clearly also does (check it!), as does {ka}n for
some constant k. So if we call our two solutions above φ (that’s the positive one) and φ′

(we’ll note that it’s really just 1
−φ), we can say that Aφn + B(−φ)−n is the solution to our

recurrence. Since we know the starting values (R1 = 1, R2 = 1), we can plug in and solve
for A and B:

Aφ+B(1− φ) = 1

A(1 + φ) +B(2− φ) = 1

B + (A−B)φ = 1

A+ 2B + (A−B)φ = 1

A+B = 0

B − 2Bφ = 1

B =
1

1− 2φ
=

1√
5

There’s a helpful trick here, however: for a sequence of the second order, with starting values
a0 = 0 and a1 = 1, both coefficients are the same, and both are equal to 1√

D
, where D is the

determinant of the characteristic polynomial (the polynomial in λ that we get after dividing
out λn−2). Now, our sequence does not have an R0 term, but we can extend it backwards.
Since R2 = 1 and R1 = 1, we know 1 = 1 + R0 and R0 = 0. Now, we easily see that the
equation for the sequence is

Rn =
φn − (−φ)−n√

5
.
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By the way, you should all recognize this as the Fibonacci sequence. We can make the
formula we derived even nicer by noticing that (−φ)−1 term is less than 1/2 for n ≥ 2, so
we can just ignore it and get the simpler formula

Rn ≈
1√
5
φn.

This formula is never off by more than 1/2, so we can just round the result to the nearest
integer to get our answer.

Problem Section 2

1. The “Tribonacci” sequence is defined by Tn+3 = Tn+2 + Tn+1 + Tn and the starting
values T1 = T2 = T3 = 1. Find the smallest n for which Tn is over 9000. A computer
would be helpful, but don’t just brute force it.

2. Given a set of 3 initial values, what does the sequence an+3 = 3an+2 − 3an+1 + an do?

Multiple Roots and Polynomial Approximations

In general, given a linear, homogeneous sequence, we can form the characteristic polynomial
by rewriting the sequence but replacing an+k with λk. Finding the roots of the polynomial
r0, r1, . . . , rk lets us write the closed form expression in the form an = C0r

n
0 +C1r

n
1 +· · ·+Ckrnk .

One important thing to note is that if one of the roots is a double root or kth-order root,
the corresponding coefficient will instead be a (k − 1)-order polynomial. By the way, some
of your roots may be complex. For example, consider the recurrence an+2 = −an, with
initial values a0 = 0, a1 = 1. This is the sequence sin π

2
n, and has characteristic polynomial

λ2 = −1. Clearly, this has no real roots. But you can solve it to get an = 1
2i

(in − i−n).

Here’s an example where the roots can have multiplicities. Given a sequence a where an+2 =
2an+1 − an, describe what this sequence does for starting values a1 and a2.

Well, we can try an example or two (always a good idea!). If the starting values are a1 = 2 and
a2 = 7, we have the sequence 2, 7, 12, 17, . . . . If the starting values are a1 = 3 and a2 = 5, we
have 3, 5, 7, 9, 11, . . . . In general, the sequence looks like it’s making an arithmetic sequence
from the starting values. Let’s see why.

We’ll use characteristic polynomials. Forming the characteristic polynomial, we get λ2 =
2λ − 1. We instantly see that this factors, giving (λ − 1)2 = 0, so 1 is a double root. Now,
since it’s a double root, the closed form we get will have a coefficient in front of rn0 that is
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linear (the double root means the coefficient will have two terms, meaning it’s linear). So,
our closed form looks like an = (An + B)1n, which obviously simplifies to an = An + B.
Thus, we’ve proven that our sequence from before produces a linear extrapolation of the
starting terms.

In fact, you can generalize this to get a quick way to do nth-order extrapolations of a few
data points. If we want a cubic approximation to 1, 2, 5, 3, we simply use the recursive
sequence an+4 = 4an+3− 6an+2 + 4an+1− an. So we can quickly calculate that the next term
would be 4 · 3− 6 · 5 + 4 · 2− 1 = 12− 30 + 8− 1 = −11.

This also proves the nontrivial property that if the value of an nth-order polynomial is
integral at n+ 1 consecutive points, it is integral for any integer argument.

Problem Section 3

1. Find a recursive definition for the sequence whose closed form is an = (n2 + 1)2n + 1.

2. A 3rd order polynomial P has the property that P (1) = 1, P (2) = 18, P (4) = 17, and
P (5) = 23. Find P (3).

3. Check whether there exists a quintic P such that P (0) = 0, P (1) = 1, P (2) = −2,
P (3) = 3, P (4) = −4, P (5) = 5, and P (6) = −3.

Here’s another cool use of characteristic polynomials. Let’s say we have a sequence which
is periodic with period p. Then your recurrence is an+p = an, and your characteristic
polynomial λp − 1 = 0. The roots of this are the p-th roots of unity (which is, honestly,
pretty cool by itself). It also means that a complete characterization of periodic functions
(periodic on the integers, that is) is just that: a linear combination of terms involving e2πil/p.
This has cool connections to number theory and group theory, but let’s get back to the main
topic of this talk.

So, let’s do another problem. We have the sequence 1, 2, 4, 8, 16, . . . , 2n. However, we don’t
recognize that the sequence is just the powers of two (silly us!), so when we are asked for
the next term, we just do a polynomial approximation. How far off are we?

Let’s try a few simple examples. If we call the P (n) the value we’re trying to find, we can
use that polynomial extrapolation formula we got in the last section to see that:

P (1) = 1 = 1

P (2) = 2 · 2− 1 = 3

P (3) = 3 · 4− 3 · 2 + 1 = 7

P (4) = 4 · 8− 6 · 4 + 4 · 2− 1 = 15
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Note that in each case, P (n) is exactly one less than 2n. Let’s try to prove it.

Now, since we have a shiny new hammer (ooh, characteristic polynomials. . . shiny!), let’s
try to hit this problem on the head with it. We know (by again using our polynomial
extrapolation trick) that we’re going to need the value of

n∑
k=0

(−1)n
(
n+ 1

n− k

)
2n−k.

How do we do it? Let’s simplify a bit, by subtracting this from 2n:

2n+1 −
n+1∑
k=0

(−1)k
(
n+ 1

k

)
2n+1−k.

Notice anything? It looks like the binomial theorem: the above sum is equivalent to (−1 +
2)k = 1, so in every case, we are off by exactly 1, in that we always end up with something
one less than the correct value. This proof, by the way, though slick, is rather opaque – the
reason the value is one away is rather non-obvious.

Rewind

So, let’s go back to the problem we had before, on the estimation of 2n. We’ll be using the
result that you end up proving in the problem section just before, so you should probably
do it. It’s not too hard. (Really. It’s not. Go do it.)

Now then, since we know that an nth order polynomial will become an (n − 1)-th order
polynomial when you take its finite differences, we can “work backwards” to get a polynomial
approximation to a sequence: if you have n terms, n− 1 finite differences will reduce you to
a single number, which obviously has a constant polynomial approximation. You can then
extend that sequence, and work backwards.

This actually leads to a trivial proof of what we had above. Consider the finite differences
of 1, 2, 4, . . . , 2n, 2n+1− 1. What are they? 1, 2, 4, . . . , 2n−1, 2n− 1 (check it!)! So, all we need
is some trivial induction to prove our claim above.

Inhomogenous Recurrence Relations

You know how you’re only supposed to buy milk that’s been homogenized? Well, the same
applies to linear recurrence relations. Only solve homogenous ones.
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Well, sort of. Because there’s actually a lot of cool things you can do with inhomogenous
ones as well. To start with, here’s an example:

an+1 = an + d

Now, we’ve seen this before. In fact, we solved it in the very beginning of the talk: it’s an
arithmetic series. But our shiny cool new toys get pwned by this really trivial stupid problem.
What to do! Aha, don’t worry! There’s a cool trick involved here. If an+1 = an + d, then
an+2 = an+1 +d, right? And that means that an+2−an+1 = an+1−an. We rearrange this and
find the characteristic polynomial, which is (λ− 1)2. Then, we can just solve our recurrence
the usual way. We know that an = An+B, and from a1 = a, a2 = a+ d, we see that A = a,
B = d. Now, note that a2 = a + d was not one of the initial conditions; we needed to use
our recurrence to get that. In general, when solving inhomogenous relations, you’ll need to
apply your recurrence several times to get extra “initial conditions”.

What about a harder problem? Like this one:

an+2 = an+1 + 3an + Fn

where Fn is the nth Fibonacci number. Well, how are we going to solve this? We can use a
trick similar to the one we just used. Take the three relations

an+4 = an+3 + 3an+2 + Fn+2

an+3 = an+2 + 3an+1 + Fn+1

an+2 = an+1 + 3an + Fn

Now we can subtract the second and third equations from the first, cancelling the Fibonacci
terms (due to their recursive relation) and leaving us with

an+4 − 2an+3 − 3an+2 + 4an+1 + 3an = 0,

which we can solve in the usual way (the characteristic polynomial: (λ2−λ−1)(λ2−λ−3))
I won’t go through the actual solution here, it’s ugly; suffice it to say that the roots are
approximately 1.6, −.6, −1.3, and 2.3.

OK, generalizing time! Let’s say that the inhomogenizing term is some arbitrary thing, but
it has a recurrence relation. So, basically, we have

ckan+k + ck−1an+k−1 + · · ·+ c0an = f(n),

where
dmf(n+m) + dm−1f(n+m) + · · ·+ d0f(n) = 0.
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What do we do now? Well, we want to cancel all of the f terms, so we can just add the first
equation times dm and shifted over m, times dm−1 shifted over m− 1, and so on. We get:

dm (ckan+k+m + ck−1an+k+m−1 + · · ·+ c1an+m+1 + c0an+m) (1)

+dm−1 (ckan+k+m−1 + ck−1an+k+m−2 + · · ·+ c1an+m + c0an+m−1) (2)

+ . . . (3)

+d1 (ckan+k+1 + ck−1an+k + · · ·+ c1an+2 + c0an+1) (4)

+d0 (ckan+k + ck−1an+k−1 + · · ·+ c1an+1 + c0an) (5)

Now, we regroup this by the an terms:

(dmck) an+k+m

+(dm−1ck + dmck−1) an+k+m−1

+(dm−2ck + dm−1ck−1 + dmck−2) an+k+m−2

+ . . .

+(d1c0 + d0c1) an+1

+(d0c0) an

=0

Form the characteristic polynomial:

(dmck)λ
k+m + (dm−1ck + dmck−1)λk+m−1 + · · ·+ (d1c0 + d0c1)λ+ (d0c0) = 0

Now, compare this to the two polynomials ckλ
k + ck−1λ

k−1 + · · · + c1λ + c0 and dmλ
m +

dm−1λ
m−1 + · · · + d1λ + d0. Who noticed it? The big polynomial is just the product of the

two smaller ones! Cool!

Let’s do a quick check, for an+1 = an + d. The polynomial for the left is λ− 1, and for the
inhomogenizing term it’s got to be λ− 1 (check it!). K, does that work? Well, the product
is (λ− 1)2, which gives us the closed form An+B, which is indeed correct. Win!

Now, what if the inhomogenizing term has no nice recurrence? Say we want an+2 = 4an+1−
7an + sinn? Well, honestly, in that case you’re completely screwed no matter what, so don’t
sweat it. Get out your handy dandy calculator and start programming.

Problem Section 4

1. What happens if we add the solution to our recurrence back into the recurrence? As
in, what if we have an+2 = an+1 + an + Fn, where the inhomogenizing term has the
same recurrence relation as the rest of the recurrence?
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2. “Verify” the formulae for sums of arithmetic and geometric series using a cool appli-
cation of inhomogenous recurrence relations.

3. Find a way to get the partial sums of a recurrence relation in explicit form. This is
really cool, so I highly suggest you do it.

Hmm. . . This Needs More Calculus

Doesn’t everything?

Now, if we have a function f(n), we can define the finite derivative ∆f
∆n

to be f(n+1)−f(n),
that is, the finite differences of the sequence an = f(n). You’ll note that this definition is
somewhat similar to the calculus definition:

df

dx
= lim

h→0

f(x+ h)− f(x)

h
,

but when we say lima→b, we mean “get a as close as you can to b without getting there”.
And in the integers, the closest you can get is one away, so the normal derivative becomes
the finite derivative.

Why is this useful? Well, it’s really cool, and there’s a lot more to say on this subject than
I will2, but there are a few applications we want to use on our problem above, to actually
explain why the answer is 2n+1 − 1.

What is ∆
∆n

2n? It’s 2n – we proved that above (or at least, you should have). That’s actually
pretty remarkable, especially if you know regular calculus, where the equivalent function is
ex (which is part of why e is so important).

What about n2? We have (n+ 1)2 − n2 = 2n+ 1. Hmm. We’d like it to be 2n, so that it’s
similar to regular calculus. Note that instead, n2 − n’s finite derivative is 2n. What about
n3? What’s its replacement? Do we have to get these experimentally? Is there a general
rule? There is. Consider nk = n(n− 1)(n− 2)(n− 3) · · · (n− k+ 1). Prove for yourself that
∆

∆n
nk = knk−1.

Now, I really want to get back to resolving our problem, but I’ll return to other cool ap-
plications of finite calculus. For now, though, I’ll make an unqualified statement: Taylor’s
theorem works in finite calculus (the proof is straightforward if you know the proof in regular
calculus; it is, however, tedious). So, what does that mean? It means there’s an operator

2See: http://www.stanford.edu/~dgleich/publications/finite-calculus.pdf
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Tk, where Tkf(n) is defined as

Tkf(n) =
∞∑
l=0

( ∆
∆n
f)(k)

l!
(n− k)l,

and that (provided certain conditions are met) Tkf(n) is equal to f(n) (at least, in a region
near k). Now, simplifying the above a bit and setting k to be 0, we get

∞∑
l=0

(
n

l

)(
∆

∆n
f

)
(0).

Isn’t it cool that the binomial coefficients just popped out of nowhere? It’s also crucial to
our problem. As in regular Taylor’s theorem, there’s a sense in which Tf(n), if you cut it
down to the first k + 1 terms, is the best kth order polynomial approximation to f(n). So,
to solve the above problem, we just have to consider the Taylor expansion of 2n+1, with the
(n+ 2)-th term chopped off.

What’s the Taylor expansion of 2n+1? Since ∆
∆n

2n = 2n, and 20 = 1, it’s
(
n
0

)
+
(
n
1

)
+
(
n
2

)
+ . . .,

which is indeed equal to 2n. Now, this series cuts itself off at some point (at n terms), which
is a very nice feature – you don’t have to chop off infinitely many terms. Just one will do.

So, we have our polynomial approximation to 2n+1:

2n+1 ≈
n∑
k=0

(
n+ 1

k

)
.

Note that we’re not adding in the last term here. But what is that last term?
(
n+1
n+1

)
= 1,

which is exactly why we’re 1 off in our approximation. Now we, in a sense, know the reason
for the theorem we’ve been proving. This actually also makes it very easy to extend our
solution. What if we extend the approximation two terms ahead? Well, we’re chopping off(
n+1
n

)
+
(
n+1
n+1

)
, or n + 2, so we’ll be that far off. Extend 1, 2, 4, 8, 16, 32 two terms out, and

you’re going to get 63, then 121. Isn’t that cool?

Deleted Footage, Blooper Reals, and Bonus Material

So, some of you may protest that though the math works, the reason that inhomogenous
relations work out the way they do is mystical. So let’s explain what really happens. Since
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your recurrence is linear, we can consider it the application of a matrix, like so:


− ck−1

ck
− ck−2

ck
· · · − c1

ck
− c0
ck

1 0 · · · 0 0
0 1 · · · 0 0
...

. . .
...

0 0 · · · 1 0





an+k−1

an+k−2

an+k−3
...

an+1

an


=



an+k

an+k−1

an+k−2
...

an+2

an+1


Now, the basic assertion that we made here was that over the complex numbers (since our
roots can be complex) this matrix is diagonalizeable. Its eigenvalues are just the roots of
our characteristic polynomial (convince yourself!). Now, what if we have our matrix multi-
plication, but then a matrix addition? That’s what you get for inhomogenous polynomials.
Well, if the matrix you’re adding is a linear recurrence itself, you can represent that by the
recurrence’s matrix operating in higher dimensions and then just offloading its results into
the part that we’re adding. And what would the eigenvalues of this big matrix be? Obvi-
ously, just the union of the eigenvalues (with associated multiplicities). Which gives you the
overall polynomial being the product of the two smaller ones.

Now, no lecture would be complete without an open problem. In this case, the open problem
is: say you have a linear recurrence ckan+k + · · ·+ c0an = 0. Is there an n such that an = 0?
What we want is a decision procedure. Well, using the material we learned here, we can
see that we reduce the problem to: given a linear combination of exponentials over the
polynomials, can we determine whether the equation has a root? Go forth, solve it, and win
the Fields medal. I dare you.

Now, if that’s an open problem, I hope you’ll agree that non-linear recurrences are just about
impossible. Here’s an example: the famous 3n+ 1 problem. Take a number. I’ll use 17 here,
for demonstration. Now, if this number is odd (it is) multiply it by 3 and add 1. OK, now
I have 52. If the number is even (now it is) divide it by 2. OK, now 26. Then 13. Then
40. Then 20, 10, 5. Then 16, 8, 4, 2, 1, 4, 2, 1, 4, 2, 1, . . . The question is, do all numbers
eventually reach that 4, 2, 1 cycle? Now, this recurrence is even almost linear — each of the
two options at any point is linear, it’s just that the thing overall is highly non-linear.

More

For more on finite calculus, including a great tutorial, I’m again going to suggest

http://www.stanford.edu/~dgleich/publications/finite-calculus.pdf.
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On the subject of characteristic polynomials, there’s a wonderful compilation of good prob-
lems (and much of the same material as here) at

http://mathcircle.berkeley.edu/BMC3/Bjorn1/Bjorn1.html.

Wikipedia is, as always, your friend. Its article on recurrences is pretty good; find it at

http://en.wikipedia.org/wiki/Recurrence_relation.
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