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Problem Section 1

Problem 1

Above, we saw that n2, a quadratic, has a linear finite difference sequence. Prove this for all
quadratic sequences.

If your sequence is An2 + Bn + C, then the finite differences are of the form A[(n + 1)2 −
n2] +B[(n+ 1)− n] + C[1− 1] = (2A)n+ (A+B), which is linear

Problem 2

What about cubics?

We can assume that our cubic is of form An3 + f(n), where f(n) is quadratic. Now, our
finite differences are A[(n+ 1)3−n3] + [f(n+ 1)− f(n)]. The finite differences of the second
term are linear (we just proved that), and the first term becomes quadratic, so we’re done.

Problem 3

What about an nth order polynomial?

Induct. When you expand (n + 1)k, the nk term has coefficient 1, so you remove it when
you do a finite difference. Now, you’re just an induction away.
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Problem Section 2

Problem 1

The “Tribonacci” sequence is defined by Tn+3 = Tn+2 + Tn+1 + Tn and the starting values
T1 = T2 = T3 = 1. Find the smallest n for which Tn is over 9000. A computer would be
helpful, but don’t just brute force it.

I warn you, this problem is somewhat hard. Let’s begin. We first find the characteristic
polynomial, P (λ) = λ3−λ2−λ−1. Now we need to find roots, but this polynomial does not
factor in any nice way. What you can do, however, is estimate. P (1) = 1− 1− 1− 1 = −2,
and P (2) = 8 − 4 − 2 − 1 = 1, so we know that our answer is close to 2. We can check
1.8 or so, and we find that P (1.8) ≈ −.3. Whatever, that’s close enough. Now, this 1.8n

term has some coefficient in front of it. I wonder what it is. . . The sequence starts out 1,
1, 1, 3, 5, 9, 17, 31, so A1.88 = 31. This implies that A ≈ 1

8
, or that we’re about 3 terms

behind. Now we just need to find n such that 1.8n = 9000. Well, we can take logs in our
head (right?), and we know that log 2 = .693, log 3 = 1.1, log 10 = 2.3, so we know that
log 9000 = 6.9 + 1.1 + 1.1 = 9.1 and that log 1.8 = 2 ∗ 1.1 + .693 − 2.4 = .59. We divide to
get n ≈ 9.1/.59 = 91/5.9 ≈ 15. Now, we add the three terms that we are behind to get 18,
which is our final answer.

By the way, it migh strike you that you could have just done the 18 terms and and there.
Well, yes, you could, but suppose I asked not about 9000 but about 1010. Then you can
calculate an answer of 41, but that’s a lot more tedious. What if I asked for 10100? Well,
you’d have to be a bit careful about your math, but you can pretty easily calculate it to be
the 381 term.

Problem 2

Given a set of 3 initial values, what does the sequence an+3 = 3an+2 − 3an+1 + an do?

Try it:

1, 1, 1 : 1, 1, 1, . . .

1, 1, 1 : 4, 7, 11, . . .

1, 2, 3 : 4, 5, 6, . . .

1, 3, 6 : 10, 15, 21, . . .

Quadratic approximation is the answer. Proof of this follows in the next section.
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Problem Section 3

Problem 1

Find a recursive definition for the sequence whose closed form is an = (n2 + 1)2n + 1.

Let’s abstract that closed form a bit: (An2 + Bn + C)2n + D1n. You should recognize this
as being the result of a characteristic polynomial: (λ − 2)3(λ − 1). You can multiply this
out to get λ4 − 7λ3 + 18λ2 − 20λ + 1. Finally, we can get from this the actual recurrence:
an+4 = 7an+3−18an+2+20an+1+an. Note that the exponents in our characteristic polynomial
could be bigger — there would be associated coefficients in our closed form, but we’d just
set them to 0. In other words, every sequence satisfies infinitely many recurrence relations.

Problem 2

A 3rd order polynomial P has the property that P (1) = 1, P (2) = 18, P (4) = 17, and
P (5) = 23. Find P (3).

Let’s say that P (3) = x. Then we can use our cool polynomial extrapolation formula:
23 = 4 · 17− 6x+ 4 · 18− 1, or 116 = 6x, giving you the final answer of x = 58

3
.

Problem 3

Check whether there exists a quintic P such that P (0) = 0, P (1) = 1, P (2) = −2, P (3) = 3,
P (4) = −4, P (5) = 5, and P (6) = −3.

Using our polynomial extrapolation formula, we see that −3 = 6 · 5 + 15 · 4 + 20 · 3 + 15 ·
2 + 6 · 1− 1 · 0, clearly impossible. Or, you could note that the intermediate value theorem
would require our polynomial to have 6 roots, clearly impossible if it were quintic.
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Problem Section 4

Problem 1

What happens if we add the solution to our recurrence back into the recurrence? As in, what
if we have an+2 = an+1 + an + Fn, where the inhomogenizing term has the same recurrence
relation as the rest of the recurrence?

I’m giving you no help on this one, because it’s hard and nasty. Have fun!

Problem 2

“Verify” the formulae for sums of arithmetic and geometric series using a cool application
of inhomogenous recurrence relations.

The basic idea here is to consider the sequence an+1 = an + f(n), where f(n) is either
a + (n − 1)d or arn−1. In the first case, the characteristic polynomial of f(n) is (λ − 1)2,
so the characteristic polynomial of {a}n is (λ − 1)3. That gives us the overall formula
An2 +Bn+C, with a0 = a, a1 = a+ (a+ d) = 2a+ d, and a2 = 2a+ d+ (a+ 2d) = 3a+ 3d
(note: we’ve set our sequence to start at 0 here. This simplifies things). Now we have that
C = a, A + B + C = 2a + d, 4A + 2B + C = 3a + 3d, which gives 2A = d, B = a + 1

2
d.

This leaves you with an = an + dn(n+1)
2

. I leave it to you to check that this is the same as
we derived at the start of the talk.

For the geometric series, we have an+1 = an+f(n), where f(n) = arn. Now, the characteristic
polynomial for f(n) is λ− r. If we assume that r is not equal to 1 (otherwise, we’re looking
at an arithmetic sequence), the characteristic polynomial for an must be (λ− 1)(λ− r), and
so your sequence is Arn + B (the r = 1 case must be special cased, for then we’d need to
Arn +B but Anrn +B). Well, a0 = a and a1 = ar, so we have A+B = a, Ar+B = a+ ar,
giving A(r− 1) = ar and B(r− 1) = −a, thus leaving us with a rn+1−1

r−1
, which we did indeed

have before.

Problem 3

Find a way to get the partial sums of a recurrence relation in explicit form. This is really
cool, so I highly suggest you do it.

This is a hard problem, so I’m not giving you solutions. I’d just hate to ruin your fun
solving them. If you want a hint, though, I’ll give you this: what does the sequence an+1 =
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an + f(n+ 1) give?

More

For more on finite calculus, including a great tutorial, I’m again going to suggest

http://www.stanford.edu/~dgleich/publications/finite-calculus.pdf.

On the subject of characteristic polynomials, there’s a wonderful compilation of good prob-
lems (and much of the same material as here) at

http://mathcircle.berkeley.edu/BMC3/Bjorn1/Bjorn1.html.

Wikipedia is, as always, your friend. Its article on recurrences is pretty good; find it at

http://en.wikipedia.org/wiki/Recurrence_relation.
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